1. Summary

Valve PA Amplifier. \$82.20 eBay July 2009
Philips label - Model Code LBH1015/01 - Serial No 1080
Two input, mono 60 W amplifier with tone control and $50 \mathrm{~V} / 70 \mathrm{~V} / 100 \mathrm{~V}$ line level outputs. Built circa 1970. 12AX7 preamp; 12AX7 driver/PI; quad 6CM5/EL36 push-pull output. OPT separate output feedback winding to driver/PI. Both triodes in preamp with common bypassed cathode resistor. Concertina splitter. Class B grid bias output stage.

Closely equivalent to 30W Philips model EV4435. Differences are no valve base selector (removed ?); Tuner socket is 5-pin DIN; PI circuit slightly tweaked; quad (not dual) 6CM5 used; tweaked OPT feedback values; upsized transformers. The OPT has a tag strip for the isolated feedback winding, and four other line level output terminals, and another isolated winding for local monitor speaker. Parts info/markings:

Power Transformer No markings. 220;240;260 label under tagstrip.
Output Transformer
2638.

POTs
500k CTS/IRHC 45; 500k 45; 1MEG tap 100K CTS 45
Caps
Ducon ECT148, (24uF 450V x3) x2. Ducon 26uF 450V
Purchased condition: no 12AX7 valves; 3 added front panel holes and connectors; no base plate; no screws for holding top cover; input sockets un-wired; no tuner HT parts C1, R4; no microphone transformer (removed ?); Vol 1 pot a bit scratchy; front grill with one largish hole.

Reference websites:
http://members.chello.nl/m.janssen36/Amplifiers-with-valves.htm
http://www.peel.dk/Philips_amplifiers/index.html
http://home.alphalink.com.au/~cambie/EL36.htm
http://ozvalveamps.elands.com/awa.htm

2. Modifications

Done:

- Added extra insulation tube to mains wiring going to Tx.
- Added two 6.5 mm insulated sockets in LHS front panel hole for guitar inputs - switched short to gnd with no plug inserted. High gain input (top) passes through additional cold-biased 12AX7 section.
- Moved Input 1 volume pot to between 10 nF (increased to 22 nF) output of tone circuit and input of driver/PI stage. Inserted send/return sockets after Vol pot, (3V3/3V3 + 10k clipper not connected on send) and .1 uF return coupling. Added 1 M grid leak and increased grid stopper to 470k to soften overdrive distortion to 12AX7 gain stage.
- Top input through 6k8/1uF cathode bypass 12AX7 with 270k anode. Output loading $\sim 750 \mathrm{k}$, with pot wiper connected to switch on bottom input. Bottom input to $1 \mathrm{k} 5 / 50 \mathrm{uF}$ cathode bypass 12AX7 with 135k anode, and standard 68 K and 1 M grid input. Common HT of 285 V .
- Moved Bass Cut pull switch to second triode output and using 5 nF switched with 47 nF .
- Tweaked driver cathode bias and PI DC bias to move idle bias into middle of each span (driver bias was too hot).
- Increased screen stopper from 47R to $47+330=380 \mathrm{R}$ to lower sag screen.
- Fixed bias from full-wave with series 470R, and pot trimmer.
- Matched V1-V4 for bias current at common bias voltage. Bias set at 10 mA nominal as walkaway observed above 20 mA .
- Added bias protection relay (Finder 40.5248 VDC) with series 1 k resistor to increase sensitivity; connected HT secondary windings. Switched by standby switch.
- Reduced fixed bias grid leak from 470 k to 220 k , given that 0.5 M is max level for single tube.
- Added 100R humdinger pot with +70VDC elevated heater bias.
- Added standby switch and indicator light in RHS front panel (intensity varied by bypass sw).
- Bypassed main VS1 electrolytic with 100uF 350V; 220uF VS2; 4.7uF VS3; 4.7uF VS5.
- MOV +2 k 2 across each OT primary, and 1.2 k resistor across output.
- Made new baseplate.
- Front panel meter (signal level) and backlight (6.3VAC bulb) added to cover leftover hole.
- Speaker output banana sockets changed to Speakon connector. 70 V to 100 V section of winding used (effective 14R loading for 1.75 k PP primary) which is 30% of secondary $0-$ 100 V .

To do:

- Use 300 mA fuse in series with 1 R cathode sense, and shunt with a 10 k (to bias valve to about $40 \mathrm{~V}, 5 \mathrm{~mA}$, if fuse blows).
- Megger test on power transformer.
- Re-arrange secondary windings to 40 R (for 32 R loading) by splitting and then paralleling 0 50 V and $50-100 \mathrm{~V}$ windings.
- Philips insignia.
- Power level measurement and stage overloading.

3. Measurements

Rail	No valves	No valves; 1 k 2 on V1	Valves in; standby	Valves in; Idle 10mA
VS1	364 V	$335 \mathrm{~V}(280 \mathrm{~mA} ; 93 \mathrm{~W})$	42 V	351 V
VS2	182 V	171 V	11 V	175 V
VS3			39 V	322 V
VS4			V	280 V
VS5			V	296 V
VS6			-42.5 V	$-68 \mathrm{~V}(-33.7 \mathrm{~V}$ bias set)
VS7			4.8 V	69 V
Heater 1	7.0 Vrms		6.6 Vrms	6.5 Vrms
Sec HT	260 Vrms			
V1-V4				$11.0,10.1 / 11.0,9.7$

Output power into 16.6Ω resistive load, sinewave input, modified circuit 14 Aug 09:
50 Wrms before gross clipping. 95 Wrms gross clipping.
The bias current on one of the 6CM5 appeared to thermally walk away above 20mA. So bias set at 10 mA nominal.

12VAC 50 Hz nominal applied to output transformer

Winding	Voltage rms	Turns ratio; Impedance for 1K8 pri; Spec level; Notes
Pri P-P: BLU to BRN	190	325V full output swing for 50/70/100V line outputs
Sec: WH to WH (flying)	0.31	$613 ; \Omega ; 0.5 \mathrm{~V}$ nominal level
Sec: 100 V line (2-5)	58.2	$3.26 ; 170 \Omega ; \quad 160 \Omega \sim 1700 \Omega$
Sec: 70 V line (2-4)	41.5	$4.585 ; 86 \Omega ; \quad 80 \Omega \sim 1682 \Omega$
Sec: Top (4-5)	16.6	$11.45 ; 13.7 \Omega ;$
Sec: Mid (3-4)	12.30	$15.45 ; 7.5 \Omega ;$
Sec: 50V line (2-3)	28.8	$6.6 ; 41 \Omega ;$
Sec: Geedback 10V, BLK to GRN (1-2)	6.00	$31.67 ; 1.8 \Omega ;$

If the full output was " 100 V " then the other outputs are 70 V and 50 V . Other amps show the outputs as 160,80 and 40 ohm levels. So the primary is about 1700 ohm P-P, which is consistent with the datasheet standard Class B 3.5k PP. The 14 ohm nominal section of winding uses about 30% of secondary turns and can be used with 8 or 16 ohm speaker. An alternative is to separate the $0-40$ and $40-160$ ohm sections and connect in parallel for a nominal 32 ohm output (eg. 2x 16R Celestion 5085W drivers).

Output transformer primary DC resistance: 62Ω plate-to-plate. The primary winding is interleaved around the secondaries.

Power transformer primary DC resistance: $7.5 \Omega, 0-240 \mathrm{~V}$.
Power transformer secondary DC resistance: $6+6 \Omega$.
Dating:
The resistors and front panel label appear to indicate to me late 1960's build timing, although I don't have a good date for when that resistor type was first manufactured. The type/serial number label has hand written type number which appears to be LBH1015/01, but this could be inaccurate as the marking is poor. I see a listing for a Philips transistor amplifier with LBH 0251/10 dated 1975.

4. Design Info

4.1 Input Hi-Gain Stage

For the first half 12AX7, V1A, VS5 = 285V; Va=200V [206]; Rk=6k8; Vk=2.2V [2.06]; Ia=0.3mA; RLdc $=270 \mathrm{k}$. Anode resistance $\mathrm{Ra}=\sim 30 \mathrm{~V} / 0.3 \mathrm{~mA}=100 \mathrm{k}$ from 2 V grid curve.

Voltage gain $=u \operatorname{RL} /(R L+R a)=90 x 195 k /(195 k+100 k)=60$; where RL $\sim 195 k$ (270k paralleled with 700k).

The input voltage swing limit is from the bias point at $\mathrm{Vgk}=-2.2 \mathrm{~V}$ to $\mathrm{Vgk}=0 \mathrm{~V}$, which is about 4.4 Vpp or 1.1 Vrms. Referring to the loadline, the plate voltage would swing about 200 V , from about 40 V to 285 V , with a mid-point of 200 V [285-200=85V; 200-40=160V]. This gives a nominal gain of $160 / 2.2$ ~ 70, which correlates with analysis above.

Cold biased for noticeable second-harmonic compression distortion on larger signals.

4.2 Input Normal-Gain Stage

For the second half 12AX7, V1B, VS5 = 290V; Va=195V [207]; Rk=2k7; Vk=1.8V [1.66]; $\mathrm{Ia}=0.65 \mathrm{~mA}$; RLdc $=135 \mathrm{k}$. Anode resistance $\mathrm{Ra}=\sim 30 \mathrm{~V} / 0.3 \mathrm{~mA}=100 \mathrm{k}$ from 2 V grid curve.

Voltage gain $=u$ RL $/(R L+R a)=90 \times 100 k /(100 k+100 k)=45$; where RL $\sim 100 \mathrm{k}$ (135k paralleled with 400 k).

The input voltage swing limit is from the bias point at $\mathrm{Vgk}=-1.8 \mathrm{~V}$ to $\mathrm{Vgk}=0 \mathrm{~V}$, which is about 3.6 Vpp or 1.3 Vrms . Referring to the loadline, the plate voltage would swing about 190 V , from about 70 V to 250 V , with a mid-point of 190 V [290-195=95V; 195-70=125V]. This gives a nominal gain of 95/1.8 $=50$, which correlates with analysis above.

Mid-cold-biased for soft compression with normal input, and symmetrical compression (of uncompressed half-cycles) on high-gain input.

4.3 Drive and Splitter Stage

A concertina splitter, with direct coupled drive from first half triode. Gain of PI is a bit under one. Gain of driver has NFB to cathode from OPT output. The change from 22 nF to 47 nF coupling is probably due to the different drive characteristics of the bottom and top halves of the PI. The 1M5 direct coupling is just for dc biasing.

Original conditions:
Driver current is $\sim(280-135 \mathrm{~V}) / 100 \mathrm{k}=1.45 \mathrm{~mA}$; Vak $\sim 135-0.92=134 \mathrm{~V}$. Effective Rk \sim $0.92 / 1.45=630$.
PI idle current is $\sim(321-285 \mathrm{~V}) / 33 \mathrm{k}=1.1 \mathrm{~mA}$; Vak $\sim 285-36=249 \mathrm{~V}$.
Common cathode feedback node $=0.92 \mathrm{~V} / 390 \mathrm{R}=2.4 \mathrm{~mA}=(1.4+1.1)$.
DC bias current through 1M5 ~ (135-36V)/1M5 = 70uA
Tweaked conditions:
Driver current is $\sim(293-182 \mathrm{~V}) / 100 \mathrm{k}=1.1 \mathrm{~mA}$; Vak $\sim 182-1.8=180 \mathrm{~V}$. Effective Rk $\sim 1.75 / 1.1=1 \mathrm{~K} 6$.
PI idle current is $\sim(325-284 \mathrm{~V}) / 33 \mathrm{k}=1.24 \mathrm{~mA}$; Vak $\sim 284-42=242 \mathrm{~V}$.
Common cathode feedback node $=1.75 \mathrm{~V} / 760 \mathrm{R}=2.3 \mathrm{~mA}=(1.1+1.2)$.
DC bias current through 1M5 ~ (182-42V)/1M5 = 93uA
The voltage swing from the driver is up to about 70 Vpk from quiescent 165 V .

4.4 Power Supplies

The power supply is full-bridge silicon diode BY127/800 and a 260-130-0 VAC centre-tapped secondary. $3 x 24 u F$ capacitor input filter for V1. Centre-tap 130VAC to 24 uF capacitor input filter for screen V2, but uses half the full-bridge to provide a full-wave rectified output.

The $37-0-37 \mathrm{VAC}$ bias supply now has a 48 V relay load, so extra diode added from un-used secondary half winding to give full-wave rectifier output. Original 37.5 VDC bias level increases to 42.8 V , but this reduces to 38.0 V with standby relay on, and ripple is reduced. Fail-safe pot added to set bias.

A standby relay provides inherent bias failure protection, and switches the two outer secondary winding connections to the full-bridge. 470k resistors are placed across each relay contact to precharge the main supply capacitors (about 45 V reached).

The heaters are taken to a +60 VDC elevated reference through a 100R 2 W humdinger pot.

4.5 Output Stage

Class B push-pull output stage with small region of class A overlap where both tube pairs conduct. The $1.8 \mathrm{~K} \Omega$ impedance plate-to-plate OPT (best estimate), presents each tube pair with 450Ω, and each tube with a 900Ω load impedance for effectively all signal currents.
$8-12 \mathrm{~W}$ max for 350 V anode is $23-34 \mathrm{~mA}$, but tubes set for 10 mA nominal.
As the output loading increases, the plate supply voltage VS1 sags from 350V, due to supply regulation (335V @ 90W loading on VS1). The voltage at the plate will be effectively lower than VS1 at high output loading by an amount up to $\sim 18 \mathrm{~V}$ due to OPT half resistance of about 31Ω (ie. peak current of up to about $2 \mathrm{x} 0.3=0.6 \mathrm{~A}$).

The screen supply voltage VS2 is nominally 50% of VS1, and will also sag a bit under screen current loading at high output loading. Screen current level increases as Vg approaches 0 V , possibly to over 40 mA , with drop across each screen stopper resistor up to $\sim 13 \mathrm{~V}$.

Each valve has an 'off' period for 50% of time where the average plate dissipation is approaching zero W. As such for design, the max average dissipation during the 'on' period can target up to $2 \times 10=$ 20W per tube, and can extend dynamically beyond 20W level if needed. Assessing the EL36/PL36 plate curves, as no known 6CM5 curves are available, shows the simple plate load line starting at crossover of 10 mA at VS1 $=350 \mathrm{~V}$ (nominal level), and experiencing plate loss extending dynamically above 20 W , and extending to the knee for gate voltage about -5 V and anode current of $\sim 300 \mathrm{~mA}$. This loadline will move lower under heavy loading as VS1 sags and OPT resistive loss increases. The plate curves would compress from the 170 V screen level towards the peak.

Assuming the loadline sags to about 300 V level (from 340 V) and a peak plate current of 300 mA is achieved, then the nominal output power of the amplifier would be: (Ipk) ${ }^{2} \times R p p / 8=0.6 \times 0.6 \times 1 \mathrm{k} 8$ $/ 8=81 \mathrm{~W}$. For this maximum signal condition, the rms OPT current draw is likely about $2 \times 190 \mathrm{~mA}$ (64% of peak), and the average VS1 power consumed is $320 \times 0.38=122 \mathrm{~W}$, and the OPT loss is $(0.38)^{2}$ $\mathrm{x} 62 \Omega=9 \mathrm{~W}$, so the tube plates dissipate $122-81-9 \mathrm{~W}=32 \mathrm{~W}$, or just under 10 W each.

4.6 HV breakdown

If the $B+$ rail shorts to ground, due to a flashover, or insulation breakdown, then 1 A fuses in the transformer outer secondary windings would provide gross failure protection by de-energising VS1, and possibly VS2.

4.7 Output Level Meter

A "SIGNAL" meter with 650Ω resistance and 125 mV FSD was used with 2 k bypass trim pot and series diode rectifier and series resistance Rs to give FSD from a $\sim 16 \mathrm{Vrms}$ level from the 50 V output winding. (16/2)x490/Rs $=0.125$ hence Rs $=33 \mathrm{k}$. But only needed 6 k 8 - probably due to distortion and doubt about 16 Vrms .

4.8 Send / Return Effects

Vol control output has up to 1Vrms output, so worthwhile adding 9V1 zeners directly across to pk limit. Use 400 mW zeners to keep parasitic capacitance low. Take return direct to same point. Add 0.1 uF poly in series with 47 k gate input.

